Читать книгу Nanovaccinology as Targeted Therapeutics - Группа авторов - Страница 28
References
Оглавление1. Arias, C.A. and Murray, B.E., Antibiotic-resistant bugs in the 21st century–A clinical super-challenge. New Engl. J. Med., 360, 439–443, 2009.
2. Rosenblum, M.D., Remedios, K.A., Abbas, A.K., Mechanisms of human autoimmunity. J. Clin. Invest., 125, 2228–2233, 2015.
3. Whitney, C.G., Zhou, F., Singleton, J., Schuchat, A., Benefits from immunization during the vaccines for children program era - United States, 1994-2013. MMWR. Morb. Mortal. Wkly. Rep., 63, 352–355, 2014.
4. Wraith, D.C., Therapeutic peptide vaccines for treatment of autoimmune diseases. Immunol. Lett., 122, 134–136, 2009.
5. Anderson, R.P. and Jabri, B., Vaccine against autoimmune disease: Antigen-specific immunotherapy. Curr. Opin. Immunol., 25, 410–417, 2013.
6. Plotkin, S., History of vaccination. Proc. Natl. Acad. Sci. U.S.A., 111, 12283–12287, 2014.
7. Shin, M.D. et al., COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol., 15, 646–655, 2020.
8. Munks, M.W. et al., Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood, 116, 5191–5199, 2010.
9. Zhang, X.Q. et al., Potent antigen-specific immune responses stimulated by codelivery of CpG ODN and antigens in degradable microparticles. J. Immunother. (Hagerstown, Md.: 1997), 30, 469–478, 2007.
10. Hokmabad, V.R. et al., A comparison of the effects of silica and hydroxyapatite nanoparticles on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/chitosan nanofibrous scaffolds for bone tissue engineering. Tissue Eng. Regener. Med., 15, 735–750, 2018.
11. Krishnamachari, Y., Geary, S.M., Lemke, C.D., Salem, A.K.J.P.r., Nanoparticle delivery systems in cancer vaccines. Pharm. Res., 28, 215–236, 2011.
12. Joshi, V.B., Geary, S.M., Salem, A.K., Biodegradable particles as vaccine delivery systems: Size matters. AAPS J., 15, 85–94, 2013.
13. Bishop, C.J., Kozielski, K.L., Green, J.J., Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. J. Control. Release: Off. J. Controlled Release Soc., 219, 488–499, 2015.
14. Corbo, C., Molinaro, R., Tabatabaei, M., Farokhzad, O.C., Mahmoudi, M., Personalized protein corona on nanoparticles and its clinical implications. Biomater. Sci., 5, 378–387, 2017.
15. Corbo, C. et al., The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (London, England), 11, 81–100, 2016.
16. Fang, R.H., Kroll, A.V., Gao, W., Zhang, L., Cell membrane coating nanotechnology. Adv. Mater. (Deerfield Beach, Fla.), 30, e1706759, 2018.
17. Gao, W. et al., Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater. (Deerfield Beach, Fla.), 25, 3549–3553, 2013.
18. Vijayan, V., Uthaman, S., Park, I.K., Cell Membrane-camouflaged nanoparticles: A promising biomimetic strategy for cancer theragnostics. Polymers, 10, 1–25, 2018.
19. Zhao, L. et al., Nanoparticle vaccines. Vaccine, 32, 327–337, 2014.
20. Laval, J.M., Mazeran, P.E., Thomas, D., Nanobiotechnology and its role in the development of new analytical devices. Analyst, 125, 29–33, 2000.
21. Schneider, C.S. et al., Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv., 3, e1601556, 2017.
22. Irvine, D.J., Hanson, M.C., Rakhra, K., Tokatlian, T., Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev., 115, 11109–11146, 2015.
23. Szeto, G.L. and Lavik, E.B., Materials design at the interface of nanoparticles and innate immunity. J. Mater. Chem. B, 4, 1610–1618, 2016.
24. Chattopadhyay, S., Chen, J.Y., Chen, H.W., Hu, C.J., Nanoparticle Vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics, 1, 244–260, 2017.
25. Pachioni-Vasconcelos, J. de A., et al., Nanostructures for protein drug delivery. Biomater. Sci., 4, 205–218, 2016.
26. Fredriksen, B.N. and Grip, J., PLGA/PLA micro- and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of Atlantic salmon (Salmo salar L.). Vaccine, 30, 656–667, 2012.
27. Zhu, M., Wang, R., Nie, G., Applications of nanomaterials as vaccine adjuvants. Hum. Vaccin. Immunother., 10, 2761–2774, 2014.
28. Ghiringhelli, F. et al., Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med., 15, 1170–1178, 2009.
29. He, Y., Hara, H., Núñez, G., Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci., 41, 1012–1021, 2016.
30. Pati, R., Shevtsov, M., Sonawane, A., Nanoparticle vaccines Against infectious diseases. Front. Immunol., 9, 2224, 2018.
31. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery, 4, 145–160, 2005.
32. Mamo, T. and Poland, G.A., Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine, 30, 6609–6611, 2012.
33. Kushnir, N., Streatfield, S.J., Yusibov, V., Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine, 31, 58–83, 2012.
34. Plummer, E.M. and Manchester, M., Viral nanoparticles and virus-like particles: Platforms for contemporary vaccine design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 3, 174–196, 2011.
35. Roldão, A., Mellado, M.C., Castilho, L.R., Carrondo, M.J., Alves, P.M., Virus-like particles in vaccine development. Expert Rev. Vaccines, 9, 1149–1176, 2010.
36. Chen, Y.-C., Cheng, H.-F., Yang, Y.-C., Yeh, M.-K., Nanotechnologies applied in biomedical vaccines. IntechOpen, J. Pharm. Pharmacol., 5, 85–107, 2017.
37. Kamaly, N., Xiao, Z., Valencia, P.M., Radovic-Moreno, A.F., Farokhzad, O.C., Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev., 41, 2971–3010, 2012.
38. Shae, D., Postma, A., Wilson, J.T., Vaccine delivery: where polymer chemistry meets immunology. Ther. Deliv., 7, 193–196, 2016.
39. Acharya, S. and Sahoo, S.K., PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 63, 170–183, 2011.
40. Mahapatro, A. and Singh, D.K., Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnol., 9, 55, 2011.
41. Danhier, F. et al., PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release: Official Journal of the Controlled Release Society, 161, 505–522, 2012.
42. Silva, A.L., Soema, P.C., Slütter, B., Ossendorp, F., Jiskoot, W., PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum. Vaccin. Immunother., 12, 1056–1069, 2016.
43. Getts, D.R., Shea, L.D., Miller, S.D., King, N.J., Harnessing nanoparticles for immune modulation. Trends Immunol., 36, 419–427, 2015.
44. Santos, D.M. et al., PLGA nanoparticles loaded with KMP-11 stimulate innate immunity and induce the killing of Leishmania. Nanomed.: Nanotechnol. Biol. Med., 9, 985–995, 2013.
45. Sawaengsak, C., Mori, Y., Yamanishi, K., Mitrevej, A., Sinchaipanid, N., Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS PharmSciTech, 15, 317–325, 2014.
46. Dhakal, S. et al., Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in Pigs. Front. Immunol., 9, 934, 2018.
47. Lynn, G.M. et al., In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol., 33, 1201–1210, 2015.
48. Carroll, E.C. et al., The vaccine Adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity, 44, 597–608, 2016.
49. Tahamtan, A. et al., Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J. Biomed. Sci., 21, 69, 2014.
50. Sawaengsak, C. et al., Intranasal chitosan-DNA vaccines that protect across influenza virus subtypes. Int. J. Pharm., 473, 113–125, 2014.
51. Ye, T. et al., M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine. Vaccine, 32, 4457–4465, 2014.
52. Zhao, K. et al., Enhancing mucosal immune response of newcastle disease virus DNA vaccine using N-2-Hydroxypropyl trimethylammonium chloride chitosan and N, O-carboxymethyl chitosan nanoparticles as delivery carrier. Mol. Pharmaceutics, 15, 226–237, 2018.
53. Zhao, K. et al., Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Delivery, 24, 1574–1586, 2017.
54. Valero, Y. et al., An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection. Dev. Comp. Immunol., 65, 64–72, 2016.
55. Vela-Ramirez, J.E. et al., Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. AAPS J., 17, 256–267, 2015.
56. Ulery, B.D. et al., Rational design of pathogen-mimicking amphiphilic materials as nanoadjuvants. Sci. Rep., 1, 198, 2011.
57. Ross, K.A. et al., Lung deposition and cellular uptake behavior of pathogen-mimicking nanovaccines in the first 48 hours. Adv. Healthcare Mater., 3, 1071–1077, 2014.
58. Liu, Y. et al., Functional nanomaterials can optimize the efficacy of vaccines. Small (Weinheim an der Bergstrasse, Germany), 10, 4505–4520, 2014.
59. Stone, J.W. et al., Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology, 24, 295102, 2013.
60. Gregory, A.E., Titball, R., Williamson, D., Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol., 3, 13, 2013.
61. Bianco, A., Kostarelos, K., Prato, M., Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 9, 674–679, 2005.
62. Wang, T. et al., Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur. J. Pharm. Sci.: Official Journal of the European Federation for Pharmaceutical Sciences, 44, 653–659, 2011.
63. Villa, C.H. et al., Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano, 5, 5300–5311, 2011.
64. Parra, J., Abad-Somovilla, A., Mercader, J.V., Taton, T.A., Abad-Fuentes, A., Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J. Control. Release: Official Journal of the Controlled Release Society, 170, 242–251, 2013.
65. Pantarotto, D. et al., Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol., 10, 961–966, 2003.
66. Niut, Y. et al., Recent advances in the rational design of silica-based nanoparticles for gene therapy. Ther. Deliv., 3, 1217–1237, 2012.
67. Yu, M. et al., Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale, 5, 178–183, 2013.
68. Xia, T. et al., Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano, 3, 3273–3286, 2009.
69. He, X.X. et al., Bioconjugated nanoparticles for DNA protection from cleavage. J. Am. Chem. Soc., 125, 7168–7169, 2003.
70. Wang, J. et al., The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. Biomaterials, 35, 466–478, 2014.
71. Al-Deen, F.M. et al., Magnetic nanovectors for the development of DNA blood-stage malaria vaccines. Nanomaterials (Basel, Switzerland), 7, 1–17, 2017.
72. Joyappa, D.H., Kumar, C.A., Banumathi, N., Reddy, G.R., Suryanarayana, V.V., Calcium phosphate nanoparticle prepared with foot and mouth disease virus P1-3CD gene construct protects mice and guinea pigs against the challenge virus. Vet. Microbiol., 139, 58–66, 2009.
73. Kraft, J.C., Freeling, J.P., Wang, Z., Ho, R.J., Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci., 103, 29–52, 2014.
74. Schwendener, R.A., Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines, 2, 159–182, 2014.
75. Wang, N. et al., Mannose derivative and lipid a dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur. J. Pharm. Biopharm.: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 88, 194–206, 2014.
76. Orr, M.T. et al., Adjuvant formulation structure and composition are critical for the development of an effective vaccine against tuberculosis. J. Control. Release: Official Journal of the Controlled Release Society, 172, 190–200, 2013.
77. Felnerova, D., Viret, J.F., Glück, R., Moser, C., Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol., 15, 518–529, 2004.
78. Monto, A.S. et al., Influenza control in the 21st century: Optimizing protection of older adults. Vaccine, 27, 5043–5053, 2009.
79. Noad, R. and Roy, P., Virus-like particles as immunogens. Trends Microbiol., 11, 438–444, 2003.
80. Grimm, S.K. and Ackerman, M.E., Vaccine design: Emerging concepts and renewed optimism. Curr. Opin. Biotechnol., 24, 1078–1088, 2013.
81. Bissett, S.L. et al., Pre-clinical immunogenicity of human papillomavirus alpha-7 and alpha-9 major capsid proteins. Vaccine, 32, 6548–6555, 2014.
82. Zhang, N., Wardwell, P.R., Bader, R.A., Polysaccharide-based micelles for drug delivery. Pharmaceutics, 5, 329–352, 2013.
83. Torchilin, V.P., Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release: Official Journal of the Controlled Release Society, 73, 137–172, 2001.
84. Jiménez-Sánchez, G. et al., Preparation and in vitro evaluation of imiquimod loaded polylactide-based micelles as potential vaccine adjuvants. Pharm. Res., 32, 311–320, 2015.
85. Liu, H. et al., Structure-based programming of lymph-node targeting in molecular vaccines. Nature, 507, 519–522, 2014.
86. Keller, S. et al., Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. J. Control. Release: Official Journal of the Controlled Release Society, 191, 24–33, 2014.
87. Accardo, A. et al., Self-assembled or mixed peptide amphiphile micelles from Herpes simplex virus glycoproteins as potential immunomodulatory treatment. Int. J. Nanomed., 9, 2137–2148, 2014.
88. Sanders, M.T., Brown, L.E., Deliyannis, G., Pearse, M.J., ISCOM-based vaccines: The second decade. Immunol. Cell Biol., 83, 119–128, 2005.
89. Waite, D.C. et al., Three double-blind, randomized trials evaluating the safety and tolerance of different formulations of the saponin adjuvant QS-21. Vaccine, 19, 3957–3967, 2001.
90. Hägglund, S. et al., Characterization of an experimental vaccine for bovine respiratory syncytial virus. Clin. Vaccine Immunol.: CVI, 21, 997–1004, 2014.
91. Pearse, M.J. and Drane, D., ISCOMATRIX adjuvant for antigen delivery. Adv. Drug Delivery Rev., 57, 465–474, 2005.
92. Baz Morelli, A. et al., ISCOMATRIX: A novel adjuvant for use in prophylactic and therapeutic vaccines against infectious diseases. J. Med. Microbiol., 61, 935–943, 2012.
93. Kanekiyo, M. et al., Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 499, 102–106, 2013.
94. Champion, C.I. et al., A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One, 4, e5409, 2009.
95. Kaba, S.A. et al., Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine. PLoS One, 7, e48304, 2012.
96. Wahome, N. et al., Conformation-specific display of 4E10 and 2F5 epitopes on self-assembling protein nanoparticles as a potential HIV vaccine. Chem. Biol. Drug Des., 80, 349–357, 2012.
97. El Bissati, K. et al., Protein nanovaccine confers robust immunity against Toxoplasma. NPJ Vaccines, 2, 24, 2017.
98. Pimentel, T.A. et al., Peptide nanoparticles as novel immunogens: Design and analysis of a prototypic severe acute respiratory syndrome vaccine. Chem. Biol. Drug Des., 73, 53–61, 2009.
99. Aguilar, J.C. and Rodríguez, E.G., Vaccine adjuvants revisited. Vaccine, 25, 3752–3762, 2007.
100. Aucouturier, J., Dupuis, L., Ganne, V., Adjuvants designed for veterinary and human vaccines. Vaccine, 19, 2666–2672, 2001.
101. Shah, P., Bhalodia, D., Shelat, P., Nanoemulsion: A pharmaceutical review. Sys. Rev. Pharm. 1, 24–32, 2010.
102. Peek, L.J., Middaugh, C.R., Berkland, C., Nanotechnology in vaccine delivery. Adv. Drug Delivery Rev., 60, 915–928, 2008.
103. O’Hagan, D.T., MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev. Vaccines, 6, 699–710, 2007.
104. De Donato, S. et al., Safety and immunogenicity of MF59-adjuvanted influenza vaccine in the elderly. Vaccine, 17, 3094–3101, 1999.
105. Nicholson, K.G. et al., Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: A randomised trial of two potential vaccines against H5N1 influenza. Lancet (London, England), 357, 1937–1943, 2001.
106. Kumar, S. et al., CpG oligodeoxynucleotide and Montanide ISA 51 adjuvant combination enhanced the protective efficacy of a subunit malaria vaccine. Infect. Immun., 72, 949–957, 2004.
107. Oliveira, G.A. et al., Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a phase I trial. Infect. Immun., 73, 3587–3597, 2005.
108. Dar, P. et al., Montanide ISA™ 201 adjuvanted FMD vaccine induces improved immune responses and protection in cattle. Vaccine, 31, 3327–3332, 2013.
109. Zeng, B.J. et al., Receptor-specific delivery of protein antigen to dendritic cells by a nanoemulsion formed using top-down non-covalent click self-assembly. Small (Weinheim an der Bergstrasse, Germany), 9, 3736–3742, 2013.
110. Kumar, S., Khilnani, G.C., Banga, A., Sharma, S.K., Predictors of requirement of mechanical ventilation in patients with chronic obstructive pulmonary disease with acute respiratory failure. Lung India: Off. Organ Indian Chest Soc., 30, 178–182, 2013.
111. Nho, R., Pathological effects of nano-sized particles on the respiratory system. Nanomed.: Nanotechnol. Biol. Med., 29, 102242, 2020.
112. Zhu, M. et al., Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res., 46, 622–631, 2013.
113. Yu, L.E. et al., Translocation and effects of gold nanoparticles after inhalation exposure in rats. Nanotoxicology, 1, 235–242, 2007.
114. Gupta, I., Duran, N., Rai, M., Nano-antimicrobials, pp. 525–548, Springer, Berlin, Germany, 2012.
115. Arms, L. et al., Advantages and Limitations of Current Techniques for Analyzing the Biodistribution of Nanoparticles. Front. Pharmacol., 9, 802, 2018.
116. Sahdev, P., Ochyl, L.J., Moon, J.J., Biomaterials for nanoparticle vaccine delivery systems. Pharm. Res., 31, 2563–2582, 2014.
1 *Corresponding author: abimran@chem.buet.ac.bd